Liouville type theorems for stable solutions of elliptic system involving the Grushin operator

نویسندگان

چکیده

<p style='text-indent:20px;'>We examine the following degenerate elliptic system:</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ -\Delta_{s} u \! = v^p, \quad v\! u^\theta, \;\; u, v>0 \;\;\mbox{in }\; \mathbb{R}^N \mathbb{R}^{N_1}\times \mathbb{R}^{N_2}, \quad\mbox{where}\;\; s \geq 0\;\; \mbox{and} \;\;p, \theta \!>\!0. $\end{document} </tex-math></disp-formula></p><p prove that system has no stable solution provided <inline-formula><tex-math id="M1">\begin{document}$ p, >0 $\end{document}</tex-math></inline-formula> and id="M2">\begin{document}$ N_s: N_1+(1+s)N_2< 2 + \alpha \beta, where</p><p id="FE2"> \frac{2(p+1)}{p\theta - 1} \quad\mbox{and} \beta \frac{2(\theta +1)}{p\theta 1}. style='text-indent:20px;'>This result is an extension of some results in [<xref ref-type="bibr" rid="b15">15</xref>]. In particular, we establish a new integral estimate for id="M3">\begin{document}$ id="M4">\begin{document}$ v (see Proposition 1.1), which crucial to deal with case id="M5">\begin{document}$ 0 < p 1. $\end{document}</tex-math></inline-formula></p>

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Liouville-type theorems for stable and finite Morse index solutions of a quasi-linear elliptic equation

We establish Liouville-type theorems for stable and finite Morse index weak solutions of −∆pu = f(x)F (u) in R . For a general non-linearity F ∈ C(R) and f(x) = |x|, we prove such theorems in dimensions N ≤ 4(p+α) p−1 +p, for bounded radial stable solutions. Then, we give some point-wise estimates for not necessarily bounded solutions. Also, similar theorems will be proved for both radial finit...

متن کامل

Existence of three solutions for a class of quasilinear elliptic systems involving the $p(x)$-Laplace operator

The aim of this paper is to obtain three weak solutions for the Dirichlet quasilinear elliptic systems on a bonded domain. Our technical approach is based on the general three critical points theorem obtained by Ricceri.

متن کامل

Equations involving a variable exponent Grushin-type operator

In this paper we define a Grushin-type operator with a variable exponent growth and establish existence results for an equation involving such an operator. A suitable function space setting is introduced. Regarding the tools used in proving the existence of solutions for the equation analyzed here they rely on the critical point theory combined with adequate variational techniques. 2010 Mathema...

متن کامل

Liouville theorems for stable solutions of biharmonic problem

We prove some Liouville type results for stable solutions to the biharmonic problem ∆u = u, u > 0 in R where 1 < q < ∞. For example, for n ≥ 5, we show that there are no stable classical solution in R when n+4 n−4 < q ≤ ( n−8 n )−1 + .

متن کامل

Liouville-type theorems and decay estimates for solutions to higher order elliptic equations

Liouville-type theorems are powerful tools in partial differential equations. Boundedness assumption of solutions are often imposed in deriving such Liouville-type theorems. In this paper, we establish some Liouville-type theorems without the boundedness assumption of nonnegative solutions to certain classes of elliptic equations and systems. Using a rescaling technique and doubling lemma devel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications on Pure and Applied Analysis

سال: 2022

ISSN: ['1534-0392', '1553-5258']

DOI: https://doi.org/10.3934/cpaa.2021187